Bioinspired Piezoresistive Acceleration Sensor Using Artificial Filiform Sensillum Structure
نویسندگان
چکیده
منابع مشابه
Development and Characterization of High-sensitivity Bioinspired Artificial Haircell Sensor
We report the development of a high sensitivity artificial haircell (AHC) sensor that employs high aspect-ratio cilium (up to 700μm tall) made of SU-8 epoxy and silicon piezoresistive strain sensors. In this work, we demonstrate the application of the artificial haircell for underwater flow sensing. For device characterization, we have performed deflection testing, resonant frequency testing, s...
متن کاملNew Design of Mems piezoresistive pressure sensor
The electromechanical analysis of a piezoresistive pressure microsensor with a square-shaped diaphragm for low-pressure biomedical applications is presented. This analysis is developed through a novel model and a finite element method (FEM) model. A microsensor with a diaphragm 1000 „m length and with thickness=400 µm is studied. The electric response of this microsensor is obtained with applyi...
متن کاملBioinspired Sensor Systems
This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrat...
متن کاملBioinspired methodology for artificial olfaction.
Artificial olfaction is a potential tool for noninvasive chemical monitoring. Application of "electronic noses" typically involves recognition of "pretrained" chemicals, while long-term operation and generalization of training to allow chemical classification of "unknown" analytes remain challenges. The latter analytical capability is critically important, as it is unfeasible to pre-expose the ...
متن کاملSensitivity Analysis of MEMS Based Piezoresistive Sensor Using COMSOL Multiphysics
The present paper peruses MEMS based piezoresistive pressure sensor and its fabrication techniques. Simulation of the pressure sensor is done by using COMSOL Multiphysics software for P-type silicon piezoresistor. The deflection of N-type silicon diaphragm depends upon the Young’s modulus of the material and varies with the amount of force applied to the diaphragm. The simulation result emphasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors and Materials
سال: 2015
ISSN: 0914-4935
DOI: 10.18494/sam.2015.1082